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Transparency in data

 Datasheets for Datasets
« STANDING Together
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Transparency in development

 Model cards
« STANDING Together

Transparency in device

performance

Trial registration

Reporting guidelines
(CONSORT-AI etc)

Intended use statements
Medical algorithmic audit
Local and national sharing of
data in the post-market phase.




o Problem
selection

Disparities in funding
and problem selection
priorities are an ethical

violation of principles of
justice.

o Data
collection

OO0
O

)
A

Y
A

o

OOO

O
O
o

A focus on convenient
samples can exacerbate
existing disparities in
marginalized and
underserved
populations, violating
do-no-harm principles.

Outcome
definition

Biased clinical
knowledge, implicit
power differentials, and
social disparities of the
healthcare system
encode bias in
outcomes that violate
justice principles.

o Algorithm
development

Default practices, like
evaluating performance
on large populations,
violate beneficence and
justice principles when
algorithms do not work
for subpopulations.

Transparency as a tool for addressing risk of bias

o Postdeployment
considerations

Targeted, spot-check
audits and a lack of
model documentation
ignore systematic shifts
in populations risks and
patient safety,
furthering risk to
underserved groups.

Chen lY, Pierson E, Rose, S...Ghassemi M Ethical Machine Learning in Healthcare. Annual Review of Biomedical Data Science 2021 4:1, 123-144



Transparency in data

9. Users Are Provided Clear, Essential Information: Users are provided ready access to clear, contextually relevant
information that is appropriate for the intended audience (such as health care providers or patients) including: the product’s intended
use and indications for use, performance of the model for appropriate subgroups, characteristics of the data used to train and test the
model, acceptable inputs, known limitations, user interface interpretation, and clinical workflow integration of the model. Users are
“also made aware of device modifications and updates from real-world performance monitoring, the basis for decision-making when
available, and a means to communicate product concerns to the developer.

U.S. FOOD & DRUG [l g J Hoatth  Santé g

ADMINISTRATION Canada Canada ggg&f;?grsyi:::g‘care products

Good Machine Learning Practice for Medical Device Development:
Guiding Principles



Tools for reporting data

Datasheets for Datasets arXiv:1803.09010
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Tools for reporting data

Datasheets for Datasets

Motivation
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> Composition

>Co|lection process
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> Uses

> Distribution

> Maintenance
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triage. Triage is an important diagnostic first step in which patients

who are falsely diagnosed as healthy are given lower priority for a

dlinician visit. As a result, the patient will not receive much-needed  socioeconomic status because, for example, patients with Medicaid

attention in a timely manner. Underdi is is p ially worse i are often in the low income bracket. Given that binarized

than misdiagnosis, because in the latter case, the patient still predictions are often required for clinical decision-making at the
individual level, we define and quantify the underdiagnosis rate

receives clinical care, and the clinician can use other symptoms and
data sources to clarify the mistake. Initial results have demonstrated  based on the binarized model predictions. To assess model decision

'University of Toronto, Toronta, Ontario, Canada. “Vector Institute, Toronto, Ontaria, Canada. *Massachusetts Institute of Technology, Cambridge, MA,

USA He-mail: ale

Growing evidence of
patient harm caused or
worsened by Al biases
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Health data poverty - are you off the map?

THE LANCET

A global review of publicly available datasets for
ophthalmological imaging: barriers to access, usability,
and generalisability

Saad M Khan*, Xiaoxuan Liu*, Siddharth Nath, Edward Korot, Livia Faes, Siegfried K Wagner, Pearse A Keane, Neil | Sebire, Matthew ) Burton,

Alastair K Denniston

B Geographical contribution of ophthalamological datasets

>
Number of datasets
per country
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Al Can Help Diagnose Some
llinesses—If Your Country Is Rich

Algorithms for detecting eye diseases are mostly trained on
patients in the US, Europe, and China. This can make the tools
ineffective for other racial groups and countries.
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Characteristics of publicly available skin cancer image
datasets: a systematic review

David Wen, Saad M Khan, Antonio Ji Xu, Hussein lbrahim, Luke Smith, Jose Caballero, Luis Zepeda, Carlos de Blas Perez, Alastair K Denniston,

Xiaoxuan Liu*, Rubeta N Matin®

Publicly available skin image dalasets are increasingly used to develop machine learning algorithms for skin cancer
diagnosis. However, the total number of datasets and their respective content is currently unclear. This systematic
review aimed to identify and evaluate all publicly available skin image datasets used for skin cancer diagnosis by
exploring their characteristics, data access requirements, and associated image metadata. A combined MEDLINE.

Metadata items

Fitzpatrick skin type
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News Opinion Sport Culture Lifestyle

UK World Coronavirus Climate crisis Football Business Environment UK politics

Skin cancer
Al skin cancer diagnoses risk being less
accurate for dark skin - study

Sex

Age

Body site
Histopathology ground truth (malignant)

Histopathology ground truth (overally

Ethnicity

3 Proportion of images with metadata
O Proportion of images without metadata
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The Geographic Bias in Medical Al
Tools

SHANA LYNCH September 21, 2020

Home / Blog

Patient data from just three states trains most Al SHARE THIS

diagnostic tools. ¥y f @&
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Arora, A., Alderman, J.E., Palmer, J...Liu X. The value of standards for health datasets in artificial intelligence-based applications. Nat Med 29, 2929-2938 (2023)
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Developing standards for data
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Generalisability

www.datadiversity.org

Ol NIHR |z, m HDRUK

Health Data Research UK

sgm UNIVERSITYSr  [V7Y & w

BIRMINGHAM  ypijversity Hospitals Birmingham ~ Medicines & Healthcare products
NHS Foundation Trust Regulatory Agency wellcome



http://www.datadiversity.org/

4

Medicines & Healthcare
products
Regulatory Agency

Guidance
& Software and Al as a Medical Device
‘l\jogmll:gg?lf:‘ DRUG I* I (l-_l‘,gﬁlatza ggﬂfda Medicines & Healthcare products Change Prog ramme = Roadmap
Regulatory Agency Updated 14 June 2023
. . . . . AlaMD forall
Good MaChlne Learnlng Practice fOl' Medlcal Device Development: This guidance will clarify and expand upon GMLP 3 “Clinical Study Participants and
Guiding princip|es Data Sets Are Representative of the Intended Patient Population”, going beyond the
Good machine learning practice mapped guidance. Broadly, this guidance will break
October 2021 down bias in AlaMD into three broad challenges:

= = = . ~ . . * Performance of AlaMD across populations and different real-world conditions
Good Machine Learning Practice for Medical Device Development:

* Ensuring data are properly contextualised to avoid AlaMD perpetuating inequalities

Guiding Principles or leading to poorer performance in subpopulations
Multi-Disciplinary Expertise Is Leveraged Good Software Engineering and Security * Working t'o ensure that ﬁ.\l.aMI.D meets thfe ne'eds of the communities in which it is
Throughout the Total Product Life Cycle Practices Are Implemented deployed in terms of verification and validation.
Clinical Study Participants and Data Sets Are In addition, with respect to the first challenge, this guidance will provide a high-level

g | Arel f t
Representative of the Intended Patient e i framework to identify, measure, manage, and mitigate bias. We will endeavour to work

Population with international partners to advance this work wherever possible.
| Solactad Refarnacs Dataasts Acs Basadl Model Design Is Tailored to the Available Data

Upon Best Available Methods and Reflects the Intended Use of the Device

Testing Demonstrates Device Performance

Focus Is Placed on the Performance of the

Hhuman-Al Tonns During Clinically Relevant Conditions WP9-06 Standards Development

Users Are Provided Clear, Essential Deployed Models Are Monitored for - . ifv bi

daraition Performance and Re-training Risks are Managed ools to identify bias

We will assist in the development of standards, frameworks, and tools to assist with the
identification and measurement of bias. For example, we will work with the STANDING
Together project which aims to establish standards for data inclusivity and
generalisability via an international consensus process to ensure that datasets
underpinning Al systems are representative and do not risk leaving underrepresented
and minority groups behind through data gaps.
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Tackling bias in Al health datasets through
the STANDING Together initiative

™ Check for updates

o the Editor — As of June 2022,
a wide range of Artificial Intel-
ligence (Al) as a Medical Device
(AlaMDs) have received regula-
toryclearance internationally, with
at least 343 devices cleared by the US Food
and Drug Administration (FDA)". Despite the
enormous potential of AlaMDs, their rapid
growth in healthcare has been accompanied
by concerns that Al models may learn biases

prioritize sample size. There are concerns
that many health datasets do not adequately
represent minority groups; however, the
extent of this problem is unknown because
many datasets do not provide demographic
information, such as on ethnicity and race.
Publicly available datasets for skin cancer
and eye imaging have shown inconsistent
and incomplete demographic reporting, and
are disproportionately collected from asmall

LT - .

observations and labels were constructed.
These concerns have motivated calls for bet-
ter documentation practices and thecreation
of tools such as ‘Datasheets for Datasets’and
‘Healthsheets™”.

The aforementioned problems are becom-
ing increasingly recognized by regulators
of medical devices. In October 2021, The US
FDA, Health Canada and the UK Medicines
and Healthcare products Regulatory Agency

We will develop standards to
promote transparency of bias in

health datasets, and mitigate the risk

of health inequalities caused by Al

medical devices.




1 - Produce draft
recommendations
by summarising
existing knowledge.

2 - Amend draft
recommendations
based on voting &
comments by
international,
multidisciplinary
stakeholders,
including patients and
public representatives.

3 - Gather feedback
on recommendations’
utility from key
stakeholders,
including international
advisory group.
Testing in covid-19,
heart failure, and
breast cancer
datasets.

4 - Produce final set

of recommendations
based on results from

steps 2 & 3, ratified by
international group of

domain experts.

<

<

Patient and
public advisary
group feedback.

Systematic
review of health
data standards.

Scoping survey
of health data
experts’ views,

l

Draft recommendations produced
by combining insights from
systematic review & scoping survey.

Delphi study round 1 voting
on all draft recommendations
& gathering feedback.

|

Amended draft recommendations
taking account of delphi round 1
results.

Delphi study round 2 voting
on all draft recommendations
& gathering feedback.

Amended draft recommendations
taking account of delphi round 2
results.

Nov 2021

STANDING %@
Together &®

Draft recommendations
for healthcare dataset
standards supporting
diversity, inclusivity, and

generalisability.

| !

‘ Green paper on the STANDING Together initiative's draft
o g

Public
consultation on
recommendations.

Test utility of Interviews with Review by
recommendations dataset curators & international
in 3 disease areas. users. advisory group.

ions, for public consultation.
Delphi round 2b 2
to propose
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1 - Dataset documentation standards

1.1a - Dataset summary

1.1b - Dataset identity and access

1.1c - Reasons behind dataset creation and its purpose(s)
1.1d - Data Origin

1.1e - Data sampling and aggregation from multiple sources
1.1f - Data shifts over time

1.2a - Composition of groups within the dataset

1.2b - Recording of Individual Attributes

1.2c - Groups at risk of disparate health outcomes

1.3a - Limitations of the dataset

1.3b - Madifications made to the data

1.3c - Missing data

1.3d - Known or potential bias caused or exacerbated by data acquisition and
processing

1.3e - Known or potential exclusion introduced by data collection
1.3f - Known or potential bias in assigned or derived Labels
1.4a - Ethics and governance

1.4b - Patient and public participation

1.4c - Bias and impact assessments
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Model Cards for Model Reporting
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> Detalls

>Intended use

> Factors

> Metrics

> Evaluation data

>Training data

Quantitative analysis

Ethical considerations

Model Card - Smiling Detection in Images

Model Details

o Developed by researchers at Google and the University of Toronto, 2018, v1.

* Convolutional Neural Net.

o Pretrained for face recognition then fine-tuned with cross-entropy loss for binary
smiling classification.

Intended Use

« Intended to be used for fun applications, such as creating cartoon smiles on real
images; augmentative applications, such as providing details for people who are
blind; or assisting applications such as automatically finding smiling photos.

® Particularly intended for younger audiences.

o Not suitable for emotion detection or determining affect; smiles were annotated
based on physical appearance, and not underlying emotions.

Factors

« Based on known problems with computer vision face technology, potential rel-
evant factors include groups for gender, age, race, and Fitzpatrick skin type;
hardware factors of camera type and lens type; and environmental factors of
lighting and humidity.

o Evaluation factors are gender and age group, as annotated in the publicly available
dataset CelebA [36]. Further possible factors not currently available in a public
smiling dataset. Gender and age determined by third-party annotators based
on visual presentation, following a set of examples of male/female gender and
young/old age. Further details available in [36].

Metrics

* Evaluation metrics include False Positive Rate and False Negative Rate to
measure disproportionate model performance errors across subgroups. False
Discovery Rate and False Omission Rate, which measure the fraction of nega-
tive (not smiling) and positive (smiling) predictions that are incorrectly predicted
to be positive and negative, respectively, are also reported. [48]

o Together, these four metrics provide values for different errors that can be calcu-
lated from the confusion matrix for binary classification systems.

® These also correspond to metrics in recent definitions of “fairness” in machine
learning (cf. [6, 26]), where parity across subgroups for different metrics corre-
spond to different fairness criteria.

* 95% confidence intervals calculated with bootstrap resampling.

o All metrics reported at the .5 decision threshold, where all error types (FPR, FNR,
FDR, FOR) are within the same range (0.04 - 0.14).

Training Data Evaluation Data

o CelebA [36], training data split. o CelebA [36], test data split.

e Chosen as a basic proof-of-concept.
Ethical Considerations

o Faces and annotations based on public figures (celebrities). No new information
is inferred or annotated.
Caveats and Recommendations

Quantitative Analyses
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* Does not capture race or skin type, which has been reported as a source of disproportionate errors [5].
® Given gender classes are binary (male/not male), which we include as male/female. Further work needed to evaluate across a

spectrum of genders.

® An ideal evaluation dataset would additionally include annotations for Fitzpatrick skin type, camera details, and environment

(lighting/humidity) details.

Figure 2: Example Model Card for a smile detector trained and evaluated on the CelebA dataset.
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1 - Dataset documentation standards

1.1a - Dataset summary

1.1b - Dataset identity and access

1.1c - Reasons behind dataset creation and its purpose(s)
1.1d - Data Origin

1.1e - Data sampling and aggregation from multiple sources
1.1f - Data shifts over time

1.2a - Composition of groups within the dataset

1.2b - Recording of Individual Attributes

1.2c - Groups at risk of disparate health outcomes

1.3a - Limitations of the dataset

1.3b - Madifications made to the data

1.3c - Missing data

1.3d - Known or potential bias caused or exacerbated by data acquisition and
processing

1.3e - Known or potential exclusion introduced by data collection
1.3f - Known or potential bias in assigned or derived Labels
1.4a - Ethics and governance

1.4b - Patient and public participation

1.4c - Bias and impact assessments

2 - Dataset Use Standards

2.1a - Provide sufficient information about dataset(s) to allow traceability and
auditability

2.2a - ldentify Contextualised Groups of Interest in advance who may be at
risk of disparate performance or harm from the Al health technology

2.2c Report the explicit and implicit use of Relevant Attributes during the
lifecycle of the Al health technology

2.2d - Evaluate performance of the Al health technology for Contextualised
Groups of Interest

2.2e - |dentify disparate performance in any additional groups outside of the
pre-specified contextualised groups of interest

2.2f Report any approaches or methods (including ‘fairness’ methods) used to
intentionally modify performance across groups.

2.3a - Report limitations of datasets used, and any implications on the Al
health technology

2.3b - Report differences between the intended purposes of the Al health
technology and datasets used, including the implications of discordance

2.3c - Report findings from pre-existing assessments of the Al health
technology and any datasets used

2.4a - Address uncertainties and risks with mitigation plans
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Trial registration

Reporting guidelines
(CONSORT-AI etc)

Intended use statements
Medical algorithmic audit
Local and national sharing of
data in the post-market phase.




Trial registration, design and reporting

m National Library of Medicine

National Center for Biotechnology Information

ClinicalTrials.gov

[
Focus Your Search 2 Search Results
(allfifters optional) « | Viewing 1-10 out of 1,285 studies
Only 11 of these specifically
Condition/disease @ None Selected +| A reference that they are using an
FDA-cleared device
Other terms ©
(] @ COMPLETED
NCT05178095
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Trial registration, design and reporting

Ensure studies are designed and reported according to best practice. Studies that fail to do this
may hide significant bias, which could undermine the results.

Key guidelines are CONSORT-AI for RCTs, SPIRIT-AI for trial protocols and DECIDE-AI for
earlier stage studies.!

SPIRIT-XI CONSORT-4I

Reporting Guidelines for Clinical Trial Protocols for Interventions Reporting Guidelines for Clinical Trial Reports for Interventions
Involving Artificial Intelligence Involving Artificial Intelligence

www.clinical-trials.ai



http://www.clinical-trials.ai/

Intended Use Statements ==
What is the general L
Al clinical problem?
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clinical task performed?
A |
What is the specific
w computational task?
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Creating a clearintended purpose is essential for successfully navigating the regulatory contraindications??
requirements for medical devices. In addition, the MHRA encourage manufacturers to l |
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available. This clarity and transparency can have additional advantages for SaMD when with previous answers?
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Medical algorithmic auditing
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Medical algorithmic auditing

- . Silent/Shadow Interventional . .
In silico evaluation . . . Vigilance
evaluation prospective evaluation

Liu et al. The Medical Algorithmic Audit Lancet Digital Health 2022.

Lauren Oakden-Rayner et al. Lancet Digital Health 2022
Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency

department



Medical algorithmic auditing

Scoping

Mapping

Artifact collection

Testing

Reflection

Post audit

Define audit scope

Map artificial
intelligence system

Understand intended
use

Map health-care task

Define intended impact

Identify personnel and
resources

Identify and prioritise
risks

Audit checklist

« Intended use statement

« Intended impact statement

« FMEA clinical pathway
mapping

« FMEA clinical task risk
analysis

» FMEA risk priority number
document

« Datasets

+ Data description

« Data, including
explainability artifacts

» Data flow diagram

» The artificial intelligence
model itself, if available

+ Model summary

» Previous evaluation
materials

Exploratory error analysis

Risk mitigation measures

Algorithmic audit summary
report

Subgroup testing

Developer actions

Plan re-audit

Adversarial testing

Clinical actions

FMEA

Liu et al. The Medical Algorithmic Audit Lancet Digital Health 2022.




Medical algorithmic auditing
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Liu et al. The Medical Algorithmic Audit Lancet Digital Health 2022.
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Responsible Innovation in Al for Health

Working together to ensure Al technologies are:
safe, effective, equitable and sustainable.

Translating scientific evidence into best practice in
research, policy and regulation
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